

Higgs physics

The Standard Model (SM) of Particle Physics has unified the Electromagnetic interaction (carrier: γ) and the weak interaction (carriers: W⁺, W⁻, Z⁰). Yet these four bosons are very different: the γ is massless whereas the W[±] and Z⁰ are quite massive (80 – 90 GeV). In the framework of the SM particles acquire mass through their interaction with the Higgs field. This implies the existence of a new particle: the Higgs boson H⁰. The theory does not predict the mass of the H⁰, but it does predict its production rate and decay modes for each possible mass. CMS has been optimized to discover the Higgs in the full expected mass range 0.08 TeV \leq M_H \lesssim 1 TeV

The decay signature of the Higgs depends on its mass:

1. $H^0 \to \gamma \gamma$ is the most promising channel if M_H is in the range 80-140 GeV. The high performance PbWO $_4$ crystal electromagnetic calorimeter in CMS has been optimized for this search. The $\gamma \gamma$ mass resolution at $M \gamma \gamma \sim 100$ GeV is better than 1%, resulting in a S/B of =1/20. With larger data samples ($\geq 10^5$ pb·) the "associated" modes (pp \to WH 0 and pp \to titH 0) should give higher S/B ratios for the same H 0 decay channel

2-3. In the M_H range 130 - 700 GeV the most promising channel is $H^0 \to ZZ^* \to 2\ell^+ 2\ell^-$ or $H^0 \to ZZ \to 2\ell^+ 2\ell^-$. The detection relies on the excellent performance from the muon chambers, the tracker and the electromagnetic calorimeter.

For $\,M_{\rm H}\!\leq\!170$ GeV a mass resolution of ~1 GeV should be achieved with the 4 Tesla magnetic field and the high resolution of the crystal calorimeter

4. For the highest M_H , in the range 0.5 - 1 TeV, the promising channels for 10^5 pb $^{\text{-}1}$ are $H^0 \to ZZ \to \ell^+\ell^-\nu\nu$, $H^0 \to ZZ \to \ell^+\ell^-$ jj and $H^0 \to W^+W^- \to \ell^\pm\nu$ jj.

Detection relies on leptons, jets and missing transverse energy (E_t^{miss}), for which the hadronic calorimeter(HCAL) performance is very important

Observability of the SM Higgs in CMS with $10^5~\text{pb}^{-1}$. The CMS detector can probe the entire mass range up to $M_H \sim 1~\text{TeV}$ with a signal significance well above 5σ

Some extensions of the Standard Model involve a richer set of Higgs bosons: in the Minimal Supersymmetric SM there are five new bosons (h°, H°, A°, H*, H¯). Their discovery involves the use of more complicated signatures, such as the identification of a jet as coming from b quarks

