

New physics

Supersymmetry (SUSY) postulates a deeper relationship between matter particles (spin-1/2 or "fermions") and force carriers (integer spin or "bosons") than the Standard Model (SM). In SUSY, each fermion has a "superpartner" of spin-0 while each boson has a spin-1/2 superpartner. The Higgs sector is also extended to at least five Higgs bosons in the Minimal Supersymmetric Standard Model (MSSM). To this day, no superpartners have been observed: SUSY must be a broken symmetry, i.e. the superpartners must have masses different than those of their partner particles.

Despite the doubling of the spectrum of particles, SUSY has many merits: it is elegant; assuming the existence of superpartners with TeV-scale masses, the Strong, Weak and Electromagnetic force strengths become equal at the same energy of ~ 10^{16} GeV (the "GUT scale"); it also provides a natural explanation of why the Higgs mass can be low (≤ 1 TeV). In SUSY theories, there is even room for explaining the dark matter in the Universe as being due to "neutralinos". If SUSY is a true symmetry of Nature and it is realized at the TeV scale, it will almost certainly be seen in CMS

SUSY Higgs bosons

In the MSSM there are 5 Higgs bosons: h⁰, H⁰, A⁰ and H[±] decaying through a variety of decay modes to γ , e[±], μ^{\pm} , τ^{\pm} and jets in final states. Above left: an example of a SUSY Higgs decay in CMS. On the right is the reconstructed $\tau \tau$ mass spectrum

Example of the domain of parameter space of mSUGRA-MSSM where the $h^0{\rightarrow}$ bb can be abserved

Higgs bosons in MSSM

The search for the various MSSM Higgs bosons in different decay modes allows the exploration of most of the parameter region $(tang\beta,m_A)$

Sparticle discovery ranges

Production of sparticles may reveal itself though some spectacular kinematical spectra, with a pronounced "edge" in the $\ell^+ \ell^-$ mass spectrum reflecting $\tilde{X}_2^0 \rightarrow \ell^+ \ell^- \tilde{X}_1^0$ production and decay. An example of such an edge in the inclusive di-lepton mass spectrum and of an event with tri-lepton are shown above

Domain of mSUGRA parameter space where the "edge" in $\ell^+\ell^-$ mass, in inclusive isolated two - leptons + ${\rm Et}_{\rm t}^{\rm miss}$ final states, should be visible at various luminosities

Domains of mSUGRA parameter space (m₀,m_{1/2}) where various sparticles can be searched

Gluinos and squarks can be looked for in various channels with leptons + E_t^{miss} + jets and discovered for masses up to $\sim 2.2~{\rm TeV}$. Sleptons can be discovered for masses up to $\sim 350~{\rm GeV}$. The region of parameter space 0.15 $\stackrel{<}{\simeq} \Omega h^2 \stackrel{<}{\approx} 0.4 -$ where λ_t^0 would be the Cold Dark Matter particle — is contained well within the explorable region